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ABSTRACT  
         Tissue clustering and classification are among the most challenging tasks in DT image analysis. While classification identifies the tissue type within a voxel, 
clustering identifies regions of interest (ROI) in which tissue properties are similar. The aim of this work is to propose and investigate the effectiveness of unsupervised 
tissue clustering and classification algorithms for DTI data. The former employs four possible models to describe diffusion in each seed voxel; a model selection 
framework, adapted from Snedecor’s F-test is used to choose the most parsimonious model. The latter assesses the spatial homogeneity of the distribution of the entire 
diffusion tensor using the statistical framework of Hext and Snedecor, in which the null hypothesis of diffusion tensors having a similar parameter distribution is 
determined by an F-test. Both numerical phantoms and DWI data obtained from excised rat spinal cord are used to test and validate these tissue clustering and 
classification approaches. 
INTRODUCTION 
         Diffusion Tensor Magnetic Resonance Imaging (DT-MRI or DTI) provides noninvasive quantitative measurements of the apparent diffusion tensor of water 
molecules in tissue. The principal diffusivities and principal directions of the tensor within a voxel reflect features of the local tissue structure (e.g., anisotropy or 
isotropy) and tissue type (e.g., CSF, gray matter, white matter), whereas, their distribution within the imaging volume could help identify different pathways or 
anatomic structures.  Most previous work in DTI clustering is based on thresholding criteria applied to tensor-derived scalar quantities, such as the Trace (Tr) or 
Fractional Anisotropy (FA). However, these scalars are subject to bias due to background noise and do not embody all information contained in the 3x3 diffusion tensor.  
To overcome this problem we perform unsupervised clustering with the entire diffusion tensor using a statistical hypothesis framework adapted from Snedecor [1] and 
Hext [2]. Prior to clustering, a parsimonious model selection approach is used to classify local tissue structure and type using a series of sequential F-tests. 
THEORY 
        For the F-test to be valid the residual sum of squares (RSS) errors must be normally distributed and the variance must be uniform within the sample (or set of 
voxels). In previous works it has been shown that the RSS is asymptotically normally distributed at an SNR greater than 7. However, the variance in neighboring voxels 
may not be homogeneous. To overcome this problem, we select a local ROI in which each voxel is described by the same diffusion model (e.g., prolate, oblate, general 
anisotropic, or isotropic), previously determined by the parsimonious model selection method. Once the optimal model is chosen in each voxel, we use this information 
to group tissues in ROIs. The null hypothesis assumes that the difference between diffusion tensors for m voxels of the same model type is statistically insignificant. To 
test this hypothesis, we perform the following steps, adapted from Hext: 1) Combine m sets of acquired signals, SCAS, into an [n·m x 1] array, where n is a number of 
experimental data points in each voxel; 2) Combine m sets of individually estimated signals, SCES ([n ·m x 1]); 3) Estimate the average diffusion tensor for m voxels, 
ˆ D Avg , by a non-linear least square minimization of the RSS for the combined acquired signals, SCAS, and the combined [n ·m x 7] design matrix, BC; 4) Estimate the 

average signal, SAvg , using SAvg(G)= S(0)⋅ e−BC
ˆ D Avg ; 5) Apply Snedecor’s F-test for testing similarities between voxels: F0 = (RSSAvg −RSSCES)/(fp⋅ (m −1))

(RSSCES)/(m ⋅(n− fp))
 where m is a 

number of voxels with n experimental data points each, RSSAvg is the residual sum of squares for the estimated averaged (reduced) model from the fit of the averaged 

diffusion tensor, ˆ D Avg , and RSSCES is the residual sum of squares for the combined full tensor model ( fp= 7).  

METHOD 
Our results are demonstrated on experimental MRI data obtained from an excised rat spinal cord fixed with 4% paraformaldehyde solution. DWIs were 

obtained using a PGSE DWI sequence with δ (pulse duration) = 2.5 ms, ∆ (diffusion time) = 70 ms, repetition time (TR) = 3500 ms, and echo time (TE) = 14.7 ms. 
Other imaging parameters were: in-plane resolution 200x200µm2, slice thickness = 2mm, number of averages (NEX): n = 1, bandwidth = 50 kHz. Forty DWIs per slice 
were acquired during 28 hours of scanning. Thirty-one of these were attenuated by diffusion gradients G = (Gx, Gy, Gz) and 9 were not attenuated (|G| = 0). In each 
direction the approximate b-value was 2000 s/mm2. 
RESULTS 
         In Monte Carlo simulations regions with a 10° difference in the direction of the axis of symmetry could be resolved at SNR≥20 and FA≥0.5. By examining the FA 
map (Fig.1a), Tr map (Fig.1b), Color map (Fig.1c), and the model map for Prolate and General Anisotropy (Fig.1d), we can only distinguish white from gray matter, 
although white matter itself consists of several different fiber compartments.  The proposed method identifies 7 distinct prolate regions within white matter (Fig.1e). 
There are two non 
symmetric regions in 
Fig. 1e. A closer 
analysis of the fixed 
spinal cord revealed 
fibers in these areas 
that were compressed 
during sample 
preparation. 
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Figure 1. a) FA map (bright and dark correspond to white and gray matter, respectively); b) Tr map; c) Color (blue through the plane); Model 
map (prolate and general anisotropy correspond to white and gray matter, respectively); e) 7 ROIs represent areas with different fiber bundles.              

 
DISCUSSION and CONCLUSION 
 Effective clustering and classification of DTI data is demonstrated using numerical and spinal chord phantoms.  Isotropic regions as well as anisotropic 
regions with subtle differences in diffusion type (oblate, prolate or full anisotropy) and model parameters (e.g., degree of prolateness or oblateness and orientation of 
axis of symmetry) could be resolved.  The sequential F-testing framework for both parsimonious model selection and clustering and classification tasks is both efficient 
and powerful. The current approach is suitable for MR microscopy applications and analysis of fixed samples in which imaging artifacts can be remediated and 
assumptions of normal residuals and uniform variance for each DWI can be assured. Future work will involve testing on in vivo DTI data. 
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